首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17075篇
  免费   2687篇
  国内免费   7296篇
  2024年   27篇
  2023年   699篇
  2022年   721篇
  2021年   811篇
  2020年   1111篇
  2019年   1212篇
  2018年   1215篇
  2017年   1181篇
  2016年   1112篇
  2015年   1060篇
  2014年   1122篇
  2013年   1480篇
  2012年   1022篇
  2011年   1069篇
  2010年   833篇
  2009年   1101篇
  2008年   1004篇
  2007年   1100篇
  2006年   961篇
  2005年   860篇
  2004年   767篇
  2003年   755篇
  2002年   655篇
  2001年   579篇
  2000年   524篇
  1999年   498篇
  1998年   395篇
  1997年   358篇
  1996年   363篇
  1995年   321篇
  1994年   316篇
  1993年   243篇
  1992年   233篇
  1991年   184篇
  1990年   177篇
  1989年   168篇
  1988年   137篇
  1987年   92篇
  1986年   92篇
  1985年   89篇
  1984年   72篇
  1983年   31篇
  1982年   88篇
  1981年   48篇
  1980年   43篇
  1979年   43篇
  1978年   22篇
  1977年   12篇
  1976年   17篇
  1958年   10篇
排序方式: 共有10000条查询结果,搜索用时 106 毫秒
11.
12.
Macrophomina phaseolina (Tassi) Goid. causes seedling blight, charcoal rot, leaf blight, stem and pod rot on over 500 plant species in different parts of the world. The pathogen survives as sclerotia formed in host tissues which are released into the soil as tissue decay. Low soil moisture is considered the more important predisposing factor for M. phaseolina-induced diseases than high temperature. The intensity of the disease on a crop is related to the population of viable sclerotia in the soil and abiotic factors. The influence of various management strategies in reducing the number of viable propagules of the pathogen in the soil has been studied in order to minimize the impact of the disease. Any management approach that reduces inoculum density in the soil may reduce disease incidence on the host. However, to reduce inoculum density, quantitative determination of viable propagules from soil is necessary in order to understand the effect of management strategies on the population dynamics of this pathogen. Considerable work has been done on organic amendments, changing crop sequences with tolerant crops, fumigants, herbicides and tillage in managing M. phaseolina populations in the soil and the resulting disease. Solarization has been used in controlling M. phaseolina in different countries where this pathogen is causing disease on economically valuable crops. However, this method of soil disinfestation was effective in eliminating viable populations at the top soil layer although by combining other approaches its effectiveness was improved at lower soil depth. Use of biological control agents with or without organic amendments or after solarization has emerged to be a practical management approach in the control of M. phaseolina. In this paper, an attempt has been made to review those research findings where the influence of various management approaches on survival of M. phaseolina mainly sclerotia have been investigated.  相似文献   
13.
Protected cultivation of ornamental flowers, as a commercial venture, becomes less profitable with excessive use of fertilizers. The present study examined the influence of microbial biofilm inoculants (AnabaenaAzotobacter, AnabaenaTrichoderma and TrichodermaAzotobacter) on the availability of soil nutrients and structure of rhizosphere microbial communities in three varieties of chrysanthemum (var. White Star, Thai Chen Queen and Zembla). Varietal-specific responses in growth, enzyme activities, flower yield of plants and availability of soil nutrients were recorded. Dehydrogenase activity was highest in var. White Star treated with the AnabaenaTrichoderma biofilm inoculants. The AnabaenaAzotobacter inoculant enhanced the availability of nitrogen, phosphorus and micronutrients in the soil, besides 40–50% increase in soil organic carbon, as compared to carrier alone or no inoculation. PCR-DGGE profiling of the cyanobacterial communities and qPCR quantification of 16S rRNA abundance of bacteria, archaea and cyanobacteria in the rhizosphere soils, revealed the stronger influences of these inoculants, especially in var. Zembla. Principal Component Analysis (PCA) helped to illustrate that the enhanced microbe-mediated availability of soil macro-and micronutrients, except iron content (Fe), was the most influential factor facilitating improved plant growth and yield parameters. The AnabaenaAzotobacter, and Anabaena–Trichoderma biofilm inoculants, proved superior in all three chrysanthemum varieties.  相似文献   
14.
15.
16.
Larvae of the scarabaeid, Cyclocephala hirta, are major pests of turfgrass in California. A field test was conducted against third instars that included the following treatments: untreated control; chemical insecticide (bendiocarb); milky disease bacterium (Bacillus popilliae); and entomopathogenic nematodes (Steinernema feltiae and Heterorhabditis bacteriophora). There were no significant differences in population reduction among the treatments, but the larval population in all plots showed a dramatic decline. The C. hirta population had a natural occurrence of milky disease and blue disease caused by Rickettsiella popilliae. The prevalence of blue disease during the course of the study averaged < 10% but that of milky disease averaged about 20%. More significantly, the soil from all treatment plots when bioassayed for B. popilliae showed that 67–90% of the larvae became infected with this bacterium. None of the larvae became infected with the blue disease organism. We conclude that B. popilliae was occurring in epizootic proportions in our field tests and was a significant mortality factor in causing the decline of the C. hirta population.  相似文献   
17.
Simultaneous determination of 15N and total N using an automated nitrogen analyser interfaced to a continuous-flow isotope ratio mass spectrometer (ANA-MS method) was evaluated. The coefficient of variation (CV) of repeated analyses of homogeneous standards and samples at natural abundance was lower than 0.1%. The CV of repeated analyses of 15N-labelled plant material and soil samples varied between 0.3% and 1.1%. The reproductibility of repeated total N analyses using the automated method was comparable to results obtained with a semi-micro Kjeldahl procedure. However, the automated method gave results which were 3% to 5% higher than those obtained with the Kjeldahl procedure. Since only small samples can be analysed, careful sample homogenization and fine grinding are very important. Evaluation of a diffusion method for preparing nitrate and ammonium in solution for automated 15N analysis showed that the recovery of inorganic N in the NH3 trap was lower when the N was diffused from water than from 2 M KCl. The results also indicated that different proportions of the NO3 - and the NH4 + in aqueous solution were recovered in the trap after combined diffusion. The method is most suited for diffusing either NO3 - or NH4 + alone, but can be used for combined diffusion of the two ions.  相似文献   
18.
Folsomia Candida was maintained on potato dextrose agar (PDA) plates precolonised by the mycoparasite Coniothyrium minitans for 3 yr but the sciarid Bradysia sp. survived for a maximum of only three generations. Collembolans and sciarid larvae from these cultures were able to transmit C. minitans to uninoculated PDA plates through the survival of spores in faecal pellets. Adult and larval sciarids also transmitted C. minitans from PDA culture to uninoculated PDA plates by contamination on the cuticle. In soil and sand both sciarids and collembolans were able to transmit C. minitans from C. m/m'tans-inoculated to uninoculated sclerotia of Sclerotinia sclerotiorum. Inoculation of sclerotia with C. minitans enabled greater populations of larger collembolans to develop. In the glasshouse where C. minitans had been applied to the soil, one adult sciarid and four collembolans out of 70 and 101 insects collected respectively yielded C. minitans on placement onto PDA + Aureomycin.  相似文献   
19.
This study was conducted to investigate the influence of soil water potential, depth of N placement, timing, and cultivar on uptake of a small dose of labeled N applied after anthesis by wheat (Triticum aestivum L.) Understanding postanthesis N accumulation should allow better control of grain protein concentration through proper manipulation of inputs. Two hard, red spring-wheat cultivars were planted in early and late fall each yr of a 2-yr field experiment. Less than 1 kg N ha–1 as K 15NO3 was injected into the soil at two depths: shallow (0.05 to 0.08 m) and deep (0.15 to 0.18 m). In both years an irrigation was applied at anthesis, and injections of labeled N were timed 4, 12, and 20 days after anthesis (DAA). Soil water potential was estimated at the time of injection. Mean recovery of 15N in grain and straw was 57% of the 15N applied. Recovery did not differ between the high-protein (Yecora Rojo) and the low-protein (Anza or Yolo) cultivars. Mean recovery from deep placement was 60% versus only 54% from shallow placement (p < 0.01). Delaying the time of injection decreased mean recovery significantly from 58% at 4 DAA to 54% at 20 DAA. This decrease was most pronounced in the shallow placement, where soil drying was most severe. Regressions of recovery on soil water potential of individual cultivar x yr x planting x depth treatments were significant only under the driest conditions. Stepwise regression of 15N recovery on soil water potential and yield parameters using data from all treatments of both years resulted in an equation including soil water potential and N yield, with a multiple correlation coefficient of 0.64. The translocation of 15N to grain was higher (0.89) than the nitrogen harvest index (0.69), and showed a highly significant increase with increase in DAA. This experiment indicates that the N uptake capacity of wheat remains reasonably constant between 4 and 20 DAA unless soil drying is severe.  相似文献   
20.
常海涛  刘任涛  陈蔚  张安宁 《生态学报》2020,40(12):4198-4206
在干旱、半干旱荒漠生态系统中,灌丛作为一种重要的植被类型,其独特的形态和生理适应特性能够有效促进退化生态系统结构与功能的恢复。土壤动物是荒漠生态系统中不可或缺的重要组成部分,对促进灌丛"肥岛"演变具有重要的生态作用,有利于灌丛生态功能的发挥及退化生态系统的恢复。近年来,国内外学者对荒漠灌丛微生境土壤动物的研究逐步深入,取得大量的研究成果。在此基础上,首先综述荒漠灌丛微生境土壤动物群落分布和生态功能,总结灌丛与土壤动物分布间作用关系的数学模型,针对荒漠灌丛土壤动物研究中存在的问题提出了未来可能的研究方向和建议。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号